[arXiv] BigDataFr recommends: Kissing Cuisines: Exploring Worldwide Culinary Habits on the Web

BigDataFr recommends: Kissing Cuisines: Exploring Worldwide Culinary Habits on the Web. […] ABSTRACT As food becomes an important part of modern life, recipes shared on the web are a great indicator of civilizations and culinary attitudes in different countries. Similarly, ingredients, flavors, and nutrition information are strong signals of the taste preferences of individuals from […]

[arXiv] BigDataFr recommends: Architecting Time-Critical Big-Data Systems

BigDataFr recommends: Architecting Time-Critical Big-Data Systems Subjects: Distributed, Parallel, and Cluster Computing (cs.DC) […] – Current infrastructures for developing big-data applications are able to process –via big-data analytics-huge amounts of data, using clusters of machines that collaborate to perform parallel computations. However, current infrastructures were not designed to work with the requirements of time-critical applications; […]

[arXiv] BigDataFr recommends: Big Data Analytics in Cloud environment using #Hadoop

BigDataFr recommends: Big Data Analytics in Cloud environment using Hadoop Subjects: Distributed, Parallel, and Cluster Computing (cs.DC) […] The Big Data management is a problem right now. The Big Data growth is very high. It is very difficult to manage due to various characteristics. This manuscript focuses on Big Data analytics in cloud environment using […]

[arXiv] BigDataFr recommends: Correct classification for big/smart/fast data machine learning

BigDataFr recommends: Correct classification for big/smart/fast data machine learning Subjects: Learning (cs.LG); Information Theory (cs.IT) […] Table (database) / Relational database Classification for big/smart/fast data machine learning is one of the most important tasks of predictive analytics and extracting valuable information from data. It is core applied technique for what now understood under data science […]

[Datasciencecentral] BigDataFr recommends: Beyond Deep Learning – 3rd Generation Neural Nets

BigDataFr recommends: Beyond Deep Learning – 3rd Generation Neural Nets […] “By far the fastest expanding frontier of data science is AI and specifically the rapid advances in Deep Learning.  Advances in Deep Learning have been dependent on artificial neural nets and especially Convolutional Neural Nets (CNNs).  In fact our use of the word “deep” […]

[arXiv] BigDataFr recommends: Measuring Economic Resilience to Natural Disasters with Big Economic Transaction Data

BigDataFr recommends: Measuring Economic Resilience to Natural Disasters with Big Economic Transaction Data Subjects: Databases (cs.DB) […] This research explores the potential to analyze bank card payments and ATM cash withdrawals in order to map and quantify how people are impacted by and recover from natural disasters. Our approach defines a disaster-affected community’s economic recovery time […]

[arXiv] BigDataFr recommends : Big Data analytics. Three use cases with R, Python and #Spark #datascientist

BigDataFr recommends: Big Data analytics. Three use cases with R, Python and Spark Subjects: Applications (stat.AP); Learning (cs.LG) […] Management and analysis of big data are systematically associated with a data distributed architecture in the Hadoop and now Spark frameworks. This article offers an introduction for statisticians to these technologies by comparing the performance obtained […]