[arXiv] BigDataFr recommends: Big Data Analytics-Enhanced Cloud Computing: Challenges, Architectural Elements, and Future Directions

BigDataFr recommends: Big Data Analytics-Enhanced Cloud Computing: Challenges, Architectural Elements, and Future Directions Excerpt The emergence of cloud computing has made dynamic provisioning of elastic capacity to applications on-demand. Cloud data centers contain thousands of physical servers hosting orders of magnitude more virtual machines that can be allocated on demand to users in a pay-as-you-go […]

[arXiv] BigDataFr recommends: An Extended classification and Comparison of NoSQL Big Data Models

BigDataFr recommends: An Extended classification and Comparison of NoSQL Big Data Models In last few years, the volume of the data has grown manyfold. The data storages have been inundated by various disparate potential data outlets, leading by social media such as Facebook, Twitter, etc. The existing data models are largely unable to illuminate the […]

[arXiv] BigDataFr recommends: Learning to Hash for Indexing Big Data – A Survey

BigDataFr recommends: Learning to Hash for Indexing Big Data – A Survey ‘The explosive growth in big data has attracted much attention in designing efficient indexing and search methods recently. In many critical applications such as large-scale search and pattern matching, finding the nearest neighbors to a query is a fundamental research problem. However, the […]

[arxiv] BIgDataFr recommends: Train faster, generalize better – Stability of stochastic gradient descent #datascientist

BigDataFr recommends: Train faster, generalize better – Stability of stochastic gradient descent ‘We show that any model trained by a stochastic gradient method with few iterations has vanishing generalization error. We prove this by showing the method is algorithmically stable in the sense of Bousquet and Elisseeff. Our analysis only employs elementary tools from convex […]

[arXiv] BigDataFr recommends: Empirical Big Data Research- A Systematic Literature Mapping #machinelearning

BigDataFr recommends: Empirical Big Data Research- A Systematic Literature Mapping « Background: Big Data is a relatively new field of research and technology, and literature reports a wide variety of concepts labeled with Big Data. The maturity of a research field can be measured in the number of publications containing empirical results. In this paper we […]

[arXiv] BigDataFr recommends: Deep Broad Learning – Big Models for Big Data

BigDataFr recommends: Deep Broad Learning – Big Models for Big Data ‘Deep learning has demonstrated the power of detailed modeling of complex high-order (multivariate) interactions in data. For some learning tasks there is power in learning models that are not only Deep but also Broad. […] The most accurate models will integrate all that information. […]

[arXiv] BigDataFr recommends: A Big Data Analyzer for Large Trace Logs #machine learning

BigDataFr recommends: A Big Data Analyzer for Large Trace Logs ‘Current generation of Internet-based services are typically hosted on large data centers that take the form of warehouse-size structures housing tens of thousands of servers. Continued availability of a modern data center is the result of a complex orchestration among many internal and external actors […]

[arXiv] BigDataFr recommends: Improving Big Data Visual Analytics with Interactive Virtual Reality #datascientist #machine learning

BigDataFr recommends: Improving Big Data Visual Analytics with Interactive Virtual Reality ‘For decades, the growth and volume of digital data collection has made it challenging to digest large volumes of information and extract underlying structure. Coined ‘Big Data’, massive amounts of information has quite often been gathered inconsistently (e.g from many sources, of various forms, […]

[arXiv] BigDataFr recommends: Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

BigDatFr recommends: Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure ‘Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own […]